Home
Class 12
MATHS
|[1,x,x^3],[1,b,b^3],[1,c,c^3]|=0; b!=c...

`|[1,x,x^3],[1,b,b^3],[1,c,c^3]|`=0; `b!=c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1 , a , a^3],[ 1, b, b^3],[ 1, c, c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Without expanding, prove the following |(1,a,a^3),(1,b,b^3),(1,c,c^3)|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)| = (a-b)(b-c)(c-a)(a+b+c).

Using properties of determinants, prove that |(1,a,a^(3)),(1,b,b^(3)),(1,c,c^(3))| = (a-b)(b-c)(c-a)(a+b+c) .

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)