Home
Class 9
MATHS
If sqrt(x)+sqrt(x-sqrt(1-x))=1 then valu...

If `sqrt(x)+sqrt(x-sqrt(1-x))=1` then value of x is

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x)-sqrt(1-x)=(1)/(5) and sqrt(x)+sqrt(1-x)=(7a)/(5) then the value of a is :

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

If x=sqrt((sqrt(5)+1)/(sqrt(5)-1)), then the value of x= of 5x^(2)-5x-1 is

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

IF x=sqrt(3)+sqrt(2) then the value of x+(1)/(x) is