Home
Class 12
MATHS
The value of the integral int0^(log5)(e^...

The value of the integral `int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

The value of the integral int_0^1e^(x^2)dx

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these