Home
Class 11
MATHS
[" 18.Let "f(x)" be a strictly increasin...

[" 18.Let "f(x)" be a strictly increasing and differentiable function,then the value "],[qquad lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0))," is equals "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a strictly increasing and differentiable function,then lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0))

If f(x) is differentiable and strictly increasing function, then the value of lim_(x rarr 0) (f(x^(2))-f(x))/(f(x)-f(0))

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=

If f'(0)=0 and f(x) is a differentiable and increasing function,then lim_(x rarr0)(x*f'(x^(2)))/(f'(x))

If f is an even function,then prove that lim_(x rarr0^(-))f(x)=lim_(x rarr0^(+))f(x)