Home
Class 11
MATHS
lim(x->oo)sum(r=1)^n (x+r)^2010/((x^1006...

`lim_(x->oo)sum_(r=1)^n (x+r)^2010/((x^1006+1)(2x^1004+1))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)sum_(r=1)^(n)((x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

Let f (x) = lim_ (n rarr oo) sum_ (r = 0) ^ (n-1) (x) / ((rx + 1) {(r + 1) x + 1})