Home
Class 11
MATHS
[" If "f(x)={[[cos pi x],,x<=1],[2{x}-1,...

[" If "f(x)={[[cos pi x],,x<=1],[2{x}-1,,x>1]],[" where "[.]" and "{.}" denote greatest "],[" integer and fractional part of "x," then "],[" (A) "f'(1^(-))=2],[" (B) "f'(1^(+))=2],[" (c) "f'(1^(-))=-2],[" (D) "f'(1^(+))=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then

If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):} , where [.] and {.} denotes greatest integer and fractional part of x, then a. f'(1^(-)) = 2 b. f'(1^(+)) = 2 c. f'(1^(-)) = -2 d. f'(1^(+)) = 0

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.