Home
Class 12
MATHS
int 1/sqrt(x^2-a^2)=log(x+sqrt(x^2-a^2))...

`int 1/sqrt(x^2-a^2)=log(x+sqrt(x^2-a^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove int(dx)/(sqrt(x^2-a^2)) = log|x+sqrt(x^2-a^2)|+c

Prove that int frac{1}{sqrt (x^2 - a^2)} dx = log (x+ sqrt (x^2 -a^2)) + c

int sqrt(x^(2)-a^(2))=(1)/(2)x sqrt(x^(2)-a^(2))-(1)/(2)a^(2)log(x+sqrt(x^(2)-a^(2))+c

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

int(1)/(sqrt(a^2+x^2))dx=log|x+sqrt(a^2+x^2)|+c

int log(x+sqrt(x^(2)+a^(2)))dx

int sqrt(a^(2)+x^(2))=(1)/(2)x sqrt(a^(2)+x^(2))+(1)/(2)a^(2)log(x+sqrt(a^(2)+x^(2))+c

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

int((x)/(sqrt(1+x^(2)))-1)log(x+sqrt(1+x^(2)))backslash dx

int sqrt(x)(log x)^(2)dx