Home
Class 12
MATHS
Show that(i) sin^(-1)(2xsqrt(1-x^2))=2si...

Show that(i) `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2))`(ii) `sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1`

Text Solution

AI Generated Solution

To solve the given problem, we will break it down into two parts as stated in the question. ### Part (i): Show that \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x) \) for \( -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \) **Step 1: Let \( x = \sin(\theta) \)** We start by substituting \( x \) with \( \sin(\theta) \). Thus, we have: \[ \sin^{-1}(2x\sqrt{1-x^2}) = \sin^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)}) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise Exercise 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Knowledge Check

  • The derivative of sin^(-1)(2xsqrt(1-x^2)) w.r.t. sin^(-1)x,(1)/(sqrt2) lt x lt 1 is :

    A
    2
    B
    `pi/2 -2`
    C
    `pi/2`
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

    Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

    sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

    2sin^(-1) (sqrt(1-x)/2) = cos^(-1) (_______).

    cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

    y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

    Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))