Home
Class 12
MATHS
|x^(2)-1+sin x|=|x^(2)-1|+|sin x| where ...

`|x^(2)-1+sin x|=|x^(2)-1|+|sin x|` where `x in [-2 pi,2 pi]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

Show that tan^-1((cosx)/(1 + sin x)) = pi/4 - x/2 , where x in (-pi/2 , pi/2)

Interval satisfying the inequality log_((1)/(2))((1)/(2)+sin x)<=0 is equal to (where x in[-pi,pi])

If sin x + sin ((pi)/(8) sqrt((1 - cos 2 x)^(2) + sin ^(2) 2 x)) = 0, x e [(5 pi)/(2), (7 pi)/(2)] , then x is

sin ^ (- 1) x + sin ^ (- 1) 2x = (2 pi) / (3)

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot