Home
Class 11
MATHS
The value of 'c' for which |alpha^(2) - ...

The value of 'c' for which `|alpha^(2) - beta^(2)| = 7//4`, where `alpha and beta` are the roots of `2 x^(2) + 7 x + c = 0`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of c for which |alpha^(2) -beta^(2)| = (7)/(4) where a and B are the roots of 2x^(2)+7x+c=0 is

If alpha, beta are the roots of 4 x^(2)-16 x+c=0 , c >0 such that 1

If alpha and beta are the roots of 4x^2 + 3x + 7 = 0 then the value of alpha beta

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

If alpha and beta ( alpha

If alpha, beta, 1 are the roots of x ^(3) - 2x ^(2) - 7x + 6 =0, then find alpha, beta.

If alpha and beta are the roots of the equation 3x^(2)+7x+3=0 Find the value of alpha beta:

alpha and beta are the roots of x^2 +2x +c=0 . IF alpha ^3 + beta ^3 =4, then the value of C is