Home
Class 12
MATHS
int(0)^( pi)x log(sin x)dx=...

int_(0)^( pi)x log(sin x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

int_(0)^(pi) x log sinx\ dx

int_(0)^( pi)cos2x*log(sin x)dx