Home
Class 12
PHYSICS
Calculate the binding energy of an alpha...

Calculate the binding energy of an `alpha`-particles. Given that mass of proton`=1.0073u`, mass of neutron`=1.0087 u`. And mass of `alpha`-particle `=4.0015 u`.

Text Solution

Verified by Experts

`m_(P)=1.0073u, m_(N)=1.0087u, M=4.001 5u`
`N=A-Z=4-2=2 ( because_(2) He^(4)=._(z)X^(A))`
`B.E= Delta mx931.5 MeV`
`{[Zm_(p)+(A-Z)m_(n)]-M}xx931.5`
`[[(2xx1.0073)+(2xx1.0087)-4.0015]]xx931.5 MeV`
`=0.0305xx931.5 MeV , BE=28.4 MeV`
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR PHYSICS

    NARAYNA|Exercise C.U.Q|191 Videos
  • NUCLEAR PHYSICS

    NARAYNA|Exercise Level-1 (C.W)|21 Videos
  • MOVING CHARGES AND MAGNETISM

    NARAYNA|Exercise EXERCISE - 4|20 Videos
  • NUCLEI

    NARAYNA|Exercise ASSERTION & REASON|5 Videos

Similar Questions

Explore conceptually related problems

Calculate the binding energy if an alpha -particle in MeV Given : m_(p) (mass of proton) = 1.007825 amu, m_(n) (mass of neutron) = 1.008665 amu Mass of the nucleus =4.002800 amu, 1 amu = 931 MeV.

Calculate the binding energy of a deutron. Given that mass of proton = 1.007825 amu mass of neutron = 1.008665 amu mass of deutron = 2.014103 amu

Calculate the binding energy of an alpha particle from the following data: mass of _1^1H atom = 1.007825 u mass of neutron = 1.008665 u mass of _4^2He atom = 4.00260 u . Take 1 u = 931 MeV c^(-2)

Calculate the binding energy for nucleon of . _6^(12) C nucleus, if mass of proton m_p = 10078 u , mass of neutron m_n = 1.0087 u , mass of C_12, m_C =12.0000 u , and 1 u =931 .4 MeV .

Calculate the binding energy per nucleon of ._26Fe^(56) nucleus. Given that mass of ._26Fe^(56)=55.934939u , mass of proton =1.007825u and mass of neutron =1.008665 u and 1u=931MeV .

Calculate the B.E./nucleon of ._17Cl^(35) nucleus. Given that of proton =1.007825u , mass of neutron =1.008665 u , mass of ._17Cl^(35)=34.980000u , 1u=931MeV .

Calculate the mass of an alpha-particle.Its binding energy is 28.2 meV.

Find the binding energy of an alpha -particle from the following data. Mass of helium nulceus =4.001235 am u Mass of proton =1.007277 am u Mass of neutron =1.00866 am u (take 1 amu=931.4813 MeV) .

Find the Binding energy per neucleon for ""_(50)^(120)Sn Mass of proton m_(p)=1.00783U , mass of neutron m_(n)=1.00867U and mass of tin nucleus m_(Sn)=119.902199U . (take 1 U = 931 MEV)