Home
Class 12
MATHS
Let f be a real-valued function defined ...

Let `f` be a real-valued function defined on the inverval `(-1,1)` such that `e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt ,` for all, `x in (-1,1)a n dl e tf^(-1)` be the inverse function of `fdot` Then `(f^(-1))^'(2)` is equal to 1 (b) `1/3` (c) `1/2` (d) `1/e`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)a n dl e tf^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to (a) 1 (b) 1/3 (c) 1/2 (d) 1/e

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)and f^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1) and let f^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to (a) 1 (b) 1/3 (c) 1/2 (d) 1/e

Let f be a real valued function defined on the interval (-1,1) such that e^(-x) f(x) = 2 + int_0^x sqrt(t^4 + 1) dt , for all x in (-1, 0) and let f^(-1) be the inverse function of f. Then (f^(-1))'(2) is equal to :

Let f be a real -valued function defined on the interval (-1, 1) such that e^(-x)f(x) = 2+int_(0)^(x) sqrt(t^(4) + 1)dt for all x in (-1, 1) and let f^(-1) be the inverse function of f. then show that (f^(-1)(2))^1 = (1)/(3)

Let f be a real-valued function on the interval (-1,1) such that e^(-x) f(x)=2+underset(0)overset(x)int sqrt(t^(4)+1), dt, AA x in (-1,1) and let f^(-1) be the inverse function of f. Then [f^(-1) (2)] is a equal to:

Let f is a real valued function defined on the interval (-1,1) such that e^(-x)f(x) = 2 + int_0^x sqrt(t^4 + 1 dt) AA x in (-1,1) and f^(-1) is the inverse of f. If (f^(-1)(2)) = 1/k then k is