Home
Class 12
PHYSICS
In the Boolean algebra : overline(A).ove...

In the Boolean algebra : `overline(A).overline(B) = ….`

A

`overline(A +B)`

B

`A.B`

C

`overline(overline(A)+ overline(B))`

D

`A + B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the Boolean algebra expression `overline(A) . overline(B)`, we will use De Morgan's Theorem, which states that the negation of a conjunction is the disjunction of the negations. The expression can be simplified step by step as follows: ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression `overline(A) . overline(B)`, which means the logical AND of the negations of A and B. 2. **Applying De Morgan's Theorem**: According to De Morgan's Theorem, the expression `overline(A) . overline(B)` can be rewritten as `overline(A + B)`. This means that the negation of the conjunction (AND operation) is equivalent to the disjunction (OR operation) of the negations. 3. **Final Expression**: Therefore, we can conclude that: \[ \overline(A) . \overline(B) = \overline(A + B) \] ### Summary: The expression `overline(A) . overline(B)` simplifies to `overline(A + B)` according to De Morgan's Theorem.

To solve the Boolean algebra expression `overline(A) . overline(B)`, we will use De Morgan's Theorem, which states that the negation of a conjunction is the disjunction of the negations. The expression can be simplified step by step as follows: ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression `overline(A) . overline(B)`, which means the logical AND of the negations of A and B. 2. **Applying De Morgan's Theorem**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEMI CONDUCTOR DEVICES

    NARAYNA|Exercise Level-II (H.W)|36 Videos
  • SEMI CONDUCTOR DEVICES

    NARAYNA|Exercise NCERT (Comprehension)|13 Videos
  • RAY OPTICS AND OPTICAL INSTRAUMENTS

    NARAYNA|Exercise EXERCISE- 4 One or more than one correct answer type|13 Videos
  • SEMICONDUCTOR ELECTRONICS

    NARAYNA|Exercise ADDITIONAL EXERCISE (ASSERTION AND REASON TYPE QUESTIONS :)|19 Videos

Similar Questions

Explore conceptually related problems

If overline(A),overline(B), overline(C) are three non-coplanar vector, the (overline(A)*overline(B)timesoverline(C))/(overline(C)*overline(A)timesoverline(B))+(overline(B)*overline(A)timesoverline(C))/(overline(C)*overline(A)timesoverline(B))=

In parallelogram ABCD, if overline(AB)=overline(a) and overline(AD)=overline(b) , then the diagonals interm of overline(a) and overline(b) are

Knowledge Check

  • What will be the input of A and B for the Boolean expression overline((A+B)).overline((A+B))=1

    A
    0,0
    B
    0,1
    C
    1,0
    D
    1,1
  • What will be the input of A and B for the Boolean expression overline((A+B)).overline((A+B))=1

    A
    0
    B
    0,1
    C
    1,0
    D
    1,1
  • The input of A and B for the Boolean expression (overline(A+B)).(overline(A.B))=1 is.

    A
    `0,0`
    B
    `0,1`
    C
    `1,0`
    D
    `1,1`
  • Similar Questions

    Explore conceptually related problems

    If overline(a), overline(b), overline(c) are three coplanar vectors, the |[overline(a), overline(b), overline(c)], [overline(a)*overline(a), overline(a)*overline(b), overline(a)*overline(c)], [overline(b)*overline(a), overline(b)*overline(b), overline(b)*overline(c)]| =

    If overline(a),overline(b), overline(c) are three non-coplanar vectors and overline(p), overline(q), overline(r) are vectors defined by the relations overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , then (overline(a)+overline(b))*overline(p)+(overline(b)+overline(c))*overline(q)+(overline(c)+overline(a))*overline(r)=

    If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b)|=b and the angle between overline(a) and overline(b) is (pi)/(3) , then c^(2) =

    If overline(a), overline(b) and overline(c) are three coplanar vectors, then (overline(a)+overline(b))*(((overline(b)+overline(c))timesoverline(a)+(overline(b)+(overline(a))timesoverline(b)))=

    If the angle between overline(a) and overline(b) is (pi)/(6) and overline(c)=overline(a)+3overline(b) , then c^(2)=