Home
Class 12
PHYSICS
Two identical sources each of intensity ...

Two identical sources each of intensity `I_(0)` have a separation `d = lambda // 8`, where `lambda` is the wavelength of the waves emitted by either source. The phase difference of the sources is `pi // 4` The intensity distribution `I(theta)` in the radiation field as a function of `theta` Which specifies the direction from the sources to the distant observation point P is given by

A

`I(theta) = I_(0)cos^(2)theta`

B

`I(theta)=(I)_(0)/(4)cos^(2)((pi theta)/(8))`

C

`I(theta)=4I_(0)cos^(2)((pi)/(8)(sin theta+1))`

D

`I(theta)= I_(0) sin^(2)theta`

Text Solution

Verified by Experts

The correct Answer is:
C

`Delta x = d sin theta = (lambda)/(8) sin theta`
`Delta phi = (2pi)/(lambda)xx(lambda)/(8) sin theta + Delta phi_(0)` (`Delta phi_(0)` is initial phase difference between the slits)
`Delta phi = (pi)/(4) sin theta + (pi)/(4)`
`Delta phi = (pi)/(4) (1+sin theta)`
Resultant intensity `I = 4I_(0) cos^(2) ((Delta phi)/(2))`
`I = 4I_(0) cos^(2) {(pi)/(8) (1+sin theta)}`
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    NARAYNA|Exercise LEVEL - VI|40 Videos
  • WAVE OPTICS

    NARAYNA|Exercise LEVEL - I(H.W)|20 Videos
  • WAVE OPTICS

    NARAYNA|Exercise NCERT Based Questions|25 Videos
  • SEMICONDUCTOR ELECTRONICS

    NARAYNA|Exercise ADDITIONAL EXERCISE (ASSERTION AND REASON TYPE QUESTIONS :)|19 Videos

Similar Questions

Explore conceptually related problems

Two identical radiators have a separation of d=lambda//4 where lambda is the wavelength of the waves emitted by either source. The initial phase difference between the sources is lambda//4 . Then the intensity on the screen at a distant point situated at an angle theta=30^@ from the radiators is (here I_0 is intensity at that point due to one radiator alone)

The intensities of two light sources are I and 91 .If the phase difference between the waves is pi then resultant intensity will be :-

Two sources of intensity 2I and 8I are used in an interference experiment. The intensity at a point where the waves from two sources superimpose with a phase difference of (a) zero (b) pi//2 and (c ) pi is

Two sources of intensity I and 4 are used in an interference experiment. Find the intensity at point where the waves from two sources superimpose with a phase difference (i) zero (ii) pi//2 and (iii) pi .

Two light sources with intensity I_(0) each interfere in a medium where phase difference between them us (pi)/2 . Resultant intensity at the point would be.

In Young's double slit experiment, the constant phase difference between two source is (pi)/(2) . The intensity at a point equidistant from theslits in terms of maximum intensity I_(0) is

The wavelength of the waves arrving at P from two coherent sources S_1 and S_2 is 4m, while intensity of each wave is I_0 . The resultant intensity at P is 2I_0 . Find the minimum valus of S_2P

Waves from two sources of intensities I and 3I are used in an interference experiment. Calculate the intensity at point where the waves superimpose with a phase difference of (i) pi//2 and (ii) pi .

Two coherent sources each emitting light of intensity I_(0) Interfere, in a medium at a point, where phase different between them is (2pi)/3 . Then, the resultant intensity at that point would be.

NARAYNA-WAVE OPTICS-LEVEL - V
  1. In Young's double slit experiment intensity at a point is ((1)/(4)) of...

    Text Solution

    |

  2. In the Young's double slit experiment using a monochromatic light of w...

    Text Solution

    |

  3. Two identical sources each of intensity I(0) have a separation d = lam...

    Text Solution

    |

  4. A screen is at distance D = 80 cm form a diaphragm having two narrow s...

    Text Solution

    |

  5. In figure S is a monochromatic point source emitting light of waveleng...

    Text Solution

    |

  6. In a modified YDSE, the region between the screen and slits is immerse...

    Text Solution

    |

  7. In the ideal double-slit experiment, when a glass-plate (refractive in...

    Text Solution

    |

  8. In an interference arrangement similar to Young's double-slit experime...

    Text Solution

    |

  9. In YDSE, bichromatic light of wavelengths 400 nm and 560 nm are used...

    Text Solution

    |

  10. Intensity obseverd in an interferecne pattern is I = I(0) sin^(2) thet...

    Text Solution

    |

  11. White light is used to illuminate the two slits in a Young's double sl...

    Text Solution

    |

  12. Two points nonochromatic and coherent sources of light of wavelength l...

    Text Solution

    |

  13. The minimum value of d os that there is a dark fringe at O is d(min). ...

    Text Solution

    |

  14. Fig. shows a surface XY separating two transparent media, medium 1 and...

    Text Solution

    |

  15. Fig. shows a surface XY separating two transparent media, medium 1 and...

    Text Solution

    |

  16. Fig. shows a surface XY separating two transparent media, medium 1 and...

    Text Solution

    |

  17. In the arrangement shown in Fig., slits S(1) and S(4)are having a vari...

    Text Solution

    |

  18. In the arrangement shown in Fig., slits S(1) and S(4)are having a vari...

    Text Solution

    |

  19. In the arrangement shown in Fig., slits S(1) and S(4)are having a vari...

    Text Solution

    |

  20. A monochromatic beam of light fall on YDSE apparatus at some angle (sa...

    Text Solution

    |