Home
Class 12
MATHS
Delta1 = |[x,b,b], [a,x, b] ,[a, a, x]| ...

` Delta_1 = |[x,b,b], [a,x, b] ,[a, a, x]|` and `Delta_2 = |[x,b],[a,x]|` show that ` d(Delta_1)/ dx = 3 Delta_2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta_1=|[x, b, b],[ a, x, b],[ a, a, x]| a n d Delta_2=|[x, b],[ a, x]| are the given determinants, then Delta_1=3(Delta_2)^2 b. d/(dx)(Delta_1)=3Delta_2 c. d/(dx)(Delta_1)=3(Delta_2)^2 d. Delta_1=3(Delta_2)^ (3//2)

If Delta_(1)=det[[x,b,ba,x,ba,a,x]] and Delta_(2)=det[[x,ba,x]] are

If Delta_(1)=|(x,b,b),(a,x,b),(a,a,x)|, Delta_(2)=|(x,b),(a,x)| then

If Delta_(1)=|(x,b,b),(a,x,b),(a,a,x)|andDelta_(2)=|(x,b),(a,x)| are the given determinants, then a) Delta_(1)=3(Delta_(2))^(2) b) (d)/(dx)(Delta_(1))=3Delta_(2) c) (d)/(dx)(Delta_(1))=3(Delta_(2))^(2) d) Delta_(1)=3Delta_(2)^(3//2)

If Delta_1 = |(x,a,b),(b,x,a),(a,b,x)| and Delta_2 = |(x,a),(a,x)| are the given determinants , then

If Delta_1=|{:(x,b,b),(a,x,b),(a,a,x):}|and Delta_2=|{:(x,b),(a,x):}| are given determinants then,

Delta_1=|(x,b,a),(a,x,b),(a,a,x)|,Delta_2=|(x,b),(a,x)| are the given determinants , then :