Home
Class 11
MATHS
r^(n)C(r)=n*^(n-1)C(r-1)...

r^(n)C_(r)=n*^(n-1)C_(r-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n+1)C_(r+1): .^(n)C_(r)=11:6 and .^(n)C_(r): .^(n-1)C_(r-1)=6:3 , find n and r.

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Verify the property ""^(n)C_(r)=n/r ""^(n-1)C_(r-1) where n=6 and r=3.