Home
Class 11
MATHS
Prove that m^[logax]=x^[logam]...

Prove that `m^[log_ax]=x^[log_am]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log_a x+log_(1/a) x=0

Prove that log_(a)xy=log_(a)x+log_(a)y.

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

Prove that: log_a x=log_bx xx log_c b xx…xx log_n m xx log_a n

Prove that log_(a^2) x=(1/2)log_a x

Prove that log_a x=log_(a^2) x^2=log_(a^n) x^n

Prove that log_ax+log_(1/(a^2))x=log_asqrtx

Prove that: log_ax xxlog_by=log_bx xxlog_ay

Prove that: log_(a)x=log_(b)x xx log_(c)b xx...xx log_(n)m xx log_(a)n

If a,b,c are in G.P., prove that: log_ax,log_bx,log_cx are in H.P.