Home
Class 12
MATHS
If x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), ...

If `x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(3at)/(1+t^2),y=(3at^2)/(1+t^2) then (dy)/(dx) =

If x=(3at)/(1+t^(3)),y=(3at^(2))/(1+t^(3)) then find dy/dx .

Find (dy)/(dx) if x=(3at)/(1+t^3), y=(3at^2)/(1+t^3) at t=1/2

If x=7/(1+t^3), y=(7t)/(1+t^3) , then show that (dy)/(dx)=(2t^3-1)/(3t^2)

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) then x((dy)/(dx))^(3)-(dy)/(dx), equals to

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to a.0 b.-1 c.1 d.2

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to (a)0(b)-1(c)1(d)

If x=(2at)/(1+t^(3))andy=(2at^(2))/((1+t^(3))^(2)), then (dy)/(dx) is