Home
Class 12
MATHS
The scalar triple product (vec(A)xxvec(B...

The scalar triple product `(vec(A)xxvec(B)).vec(C)` of three vectors `vec(A), vec(B), vec(C)` determines

Promotional Banner

Similar Questions

Explore conceptually related problems

If [vec(a),vec(b),vec(c)] denotes the scalar triple product of the vectors vec(a),vec(b),vec(c) , then [vec(a)+vec(b),vec(b)+vec(c),vec(c)+vec(a)] is equal to

The scalar triple product [vec a + vec b-vec cquad vec b + vec c-vec aquad vec c + vec a-vec b is equal to

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The plane of vector vec(A)xx(vec(A)xxvec(B)) lies in the plane of

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The plane of vector vec(A)xx(vec(A)xxvec(B)) lies in the plane of

If vec(a)xx(vec(b)xxvec(c))=(vec(a)xxvec(b))xxvec(c)," where "vec(a),vec(b)vec(c) are any three vectors such that vec(b)*vec(c)ne0andvec(a)*vec(b)ne0," then "vec(a)andvec(c)" are "