Home
Class 12
MATHS
f(x)=e^(lncot), g(x)=cot^(- 1)x...

`f(x)=e^(lncot), g(x)=cot^(- 1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x then f and g are identical?

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

If f (x) = e ^(x) , g (x) = Sin ^(-1) x and h (x) =f (g (x)), then (h'(x))/(h (x))=

If f(x)=e^(x) and g(x)=log_(e)x, then show that "fog=gof" and find f^(-1) and g^(-1) .