Home
Class 12
MATHS
Express tan^(-1)((cosx)/(1-sinx)),-(pi)/...

Express `tan^(-1)((cosx)/(1-sinx))`,`-(pi)/2ltxlt(pi)/2` in the simplest form.

Text Solution

AI Generated Solution

To express \( \tan^{-1}\left(\frac{\cos x}{1 - \sin x}\right) \) in its simplest form, we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan^{-1}\left(\frac{\cos x}{1 - \sin x}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

Express tan^(-1) ((cos x )/( 1- sin x) ) , ( -3 pi)/(2) lt x lt (pi)/(2) in the simplest form

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))}, -pi/2

Simplify tan^-1 (cosx/(1-sinx)) , for (-3pi)/2 < x< pi/2' .

Evaluate int tan^(-1)(secx+tanx)dx,-pi//2ltxlt pi//2

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

solve: tan^(-1) ((cos x)/(1-sin x)) = ((pi)/(4)+(x)/(2)) , (-3 pi)/(2)ltxlt(pi)/(2)

Differentiate tan^(-1)((sinx)/(1+cosx)), -pi