Home
Class 6
MATHS
1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(20)...

1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(20)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

The value of i^(2)+i^(4)+i^(6)+i^(8)... upto (2n+1) terms,where i^(2)=-1, is equal to:

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

1 + i^(2) + i^(4) + i^(6) = 0 .

Evaluate: (i^(2)+i^(4)+i^(6)+i^(7))/(1+i^(2)+i^(3))

1 + i^(2n) + i^(4n) + i^(6n)

What is the value of 1+i^(2)+i^(4)+i^(6)+...+i^(100) where i=sqrt(-1)