Home
Class 12
MATHS
Let f be a function defined by f(x)=(x-1...

Let `f` be a function defined by `f(x)=(x-1)^(2)+1,(xge1)`.
Statement 1: The set `(x:f(x)=f^(-1)(x)}={1,2}`
Statement 2: `f` is a bijection and `f^(-1)(x)=1+sqrt(x-1),xge1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function defined by f(x)=(x-1)^(2)+x, (x ge 1) . Statement-1: The set [x:f(x)=f^(-1)(x)]={1,2} Statement-2: f is a bijectioon and f^(-1)(x)=1+sqrt(x-1), x ge 1

Let f(x) =(x+1)^(2) - 1, x ge -1 Statement 1: The set {x : f(x) =f^(-1)(x)}= {0,-1} Statement-2: f is a bijection.

Let f:[-1,oo] in [-1,oo] be a function given f(x)=(x+1)^(2)-1, x ge -1 Statement-1: The set [x:f(x)=f^(-1)(x)]={0,1} Statement-2: f is a bijection.

Let f:[-1,oo] in [-1,oo] be a function given f(x)=(x+1)^(2)-1, x ge -1 Statement-1: The set [x:f(x)=f^(-1)(x)]={0,1} Statement-2: f is a bijection.

Let f:[-1,oo] in [-1,oo] be a function given f(x)=(x+1)^(2)-1, x ge -1 Statement-1: The set [x:f(x)=f^(-1)(x)]={0,1} Statement-2: f is a bijection.

Let f:[-1,oo] in [-1,oo] be a function given f(x)=(x+1)^(2)-1, x ge -1 Statement-1: The set [x:f(x)=f^(-1)(x)]={0,1} Statement-2: f is a bijection.

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is