Home
Class 11
MATHS
If y=e^(ax)sin bx, then prove that y2-2a...

If `y=e^(ax)sin bx`, then prove that `y_2-2ay_1+(a^2+b^2) y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=e^(ax)sin bx : Prove that y_2-2ay_1+(a^2+b^2)y=0 .

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

If y=e^(ax)sinbx show that y_2-2ay_1+(a^2+b^2)y=0 .

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0

If y = e^[ax] sin bx , prove that d^2y/dx^2 - 2a dy/dx +(a^2 + b^2 ) y = 0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y =(ax +b)/( cx + d) , then prove that 2y_1y_3=3(y_2)^2

If y =(ax +b)/( cx + d) , then prove that 2y_1y_3=3(y_2)^2