Home
Class 11
MATHS
theta1 and theta2 are the inclination ...

`theta_1` and `theta_2` are the inclination of lines `L_1a n dL_2` with the x-axis. If `L_1a n dL_2` pass through `P(x_1,y_1)` , then the equation of one of the angle bisector of these lines is (a) `(x-x_1)/(cos((theta_1-theta_2)/2))=(y-y_1)/(sin((theta_1-theta_2)/2))` (b)`(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))` (c)`(x-x_1)/(sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))` (d)`(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

theta_1 and theta_2 are the inclination of lines L_1 and L_2 with the x-axis. If L_1 and L_2 pass through P(x_1,y_1) , then the equation of one of the angle bisector of these lines is

theta_1 and theta_2 are the inclination of lines L_1 and L_2 with the x-axis. If L_1 and L_2 pass through P(x_1,y_1) , then the equation of one of the angle bisector of these lines is

x=sin^(-1)((2theta)/(1+theta^(2))),y=sec^(-1)(sqrt(1+theta^(2)))

The angle between the pair of lines y^(2)cos^(2)theta-xy cos^(2)theta+x^(2)(sin^(2)theta-1)=0 is

If x(cos theta)/(a)+y(sin theta)/(b)=1 and x(sin theta)/(a)-y(sin theta)/(b)=1 then

Angle between the lines x^(2)[cos^(2) theta-1]-xy sin^(2) theta+y^(2) sin^(2) theta= theta is

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=

If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=

Find (dy)/(dx)x=a{cos theta+(1)/(2)log(tan^(2)((theta)/(2))}y=a sin theta

If (x)/(a)cos theta+(y)/(b)sin theta=1 and (x)/(a)sin theta-(y)/(b)cos theta=1 Prove that :(x^(2))/(a^(2))+(y^(2))/(b^(2))=2