Home
Class 12
MATHS
The derivative of tan^(-1)((sqrt(1 + x)-...

The derivative of `tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

Find the derivative of Tan ^(-1) (( sqrt (1 + x ) - sqrt ( 1 -x ))/( sqrt (1+ x ) + sqrt (1 -x ))) w.r.t. x

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .