Home
Class 12
MATHS
f(x)=x+2 and g(x)=(x^2-4)/(x-2) when f(x...

`f(x)=x+2` and `g(x)=(x^2-4)/(x-2)` when `f(x)=g(x)`. Give reason for your answer

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=(1)/(1-x)andg(x)=(x-1)/(x) find (f @g) and(g@f). Comment upon your answer

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

If f(x)=|x-2| and g(x)=f(f(x)), then for 2

function f and g are defined as follows: f:RR-{1} rarr RR, where f(x) =(x^(2)-1)/(x-1) and g: RR rarr RR g(x)=x+1, RR being the set of real numbers .Is f=g ? Give reasons for your answer.

If f(x)=|x-2| and g(x)=f(f(x)), then g'(x)"for "x gt 2,is