Home
Class 12
MATHS
If x in (0,pi/2) satisfies the inequalit...

If `x in (0,pi/2)` satisfies the inequality `[tan x-sqrt3|+|4sin^2x-3|+|tan (tan^-1x)-pi/3] le 0,` then the value of `tan(cot^(- 1)((sqrt(2))/(30 x)cos((3x)/4))].` [Note : [.] denotes greatest integer function.]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the complete set of values of x is

If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the complete set of values of x is

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value of (b-a) is :

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes the greatest integer function ), then

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If (x)=[tan^(-1)(tan x):x (pi)/(4) then jump of discontinuity is (where [.] denotes greatest integer function)