Home
Class 11
MATHS
If A+B+C=180, prove that: sinA+sinB...

If `A+B+C=180`, prove that: `sinA+sinB+sinC=4cosA/2cosB/2cosC/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

If A+B+C=180^(@) then prove that the following sinA+sinB+sinC=4"cos"A/2"cos"B/2"cosC/2

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

If A+B+C= pi ,prove that :cosA+cosB-cosC=-1+4cosA/2cosB/2sinC/2.

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C=180^@ , then prove that cos2A + cos2B +cos2C=-1-4cosA cosB cosC .

Prove that (sinA+sinB)/(cosA+cosB)=tan((A+B)/2)

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .