Home
Class 12
MATHS
int(pi/2)^pi(x^(sinx)((cosxlogx)+sinx/x)...

`int_(pi/2)^pi(x^(sinx)((cosxlogx)+sinx/x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx is equal to -

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int _(-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to