Home
Class 12
MATHS
The function f(x)=sqrt(cos(sinx))+sin^-1...

The function `f(x)=sqrt(cos(sinx))+sin^-1((1+x^2)/(2x))` is defined for :

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the following function : f(x)= sqrt(cos(sinx))+ sin^(-1) ((1+x^2)/(2x)) .

The domain of the function: f(x) = sqrt(sin^(-1)(log_(2)x)) + sin^(-1)((1+x^(2))/(2x)) + sqrt(cos(sinx)) is:

Domain of the function f(x)=sqrt(cos(sin x))+sin(x^(2)-1) is [-1,1][-2,2]c*[-pi,sqrt(2)]uu[sqrt(2),pi][-sqrt(2),-sqrt(2)]

Find the domain of the following functions: (i) f(x) = (1)/(sqrt(|x| -x)) (ii) f(x) = sqrt(cos (sin x)) + sin^(-1) ((1 + x^(2))/(2x)) (iii) (1)/(log_(10) (1-x)) + sqrt(x + 2)

The domain of definition of function f(x)=sqrt(cos^(-1)x-2sin^(-1)x) is equal to

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is