Home
Class 12
MATHS
[" Number of points of discontinuity of ...

[" Number of points of discontinuity of "],[f(x)=[sin^(-1)x]-[x]" in its domain is equal to "],[" (where [.] denotes the greatest integer "],[" function) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f(x)=[(x^(3)+4x)/(2)] is discontinuous at x equal to (where [.] denotes the greatest integer function)

Number of solutions of sin x=[x] where [.] denotes the greatest integer function is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Number of points of discontinuity of f(x)=[X^(2)+1) in [-2,2] is equal to[Note :[x] denotes greatest integer function ]

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.