Home
Class 12
MATHS
lf domain of f(x) is [-1, 2] then domain...

lf domain of `f(x)` is `[-1, 2]` then domain of `f([x]-x^2+4)` where [.] denotes the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

Domain of f(x)=sin^-1[2-4x^2] is ([.] denotes the greatest integer function)

If domain of y=f(x is x in[-3,2], then domain of y=f([x] : (where [] denotes greatest integer function) (A) [-3,2], (B) [-2,3] (C) [-3,3], (D) [-2,3]