Home
Class 12
MATHS
If a1x^3 + b1x² + c1x + d1 = 0 and a2x^3...

If `a_1x^3 + b_1x² + c_1x + d_1 = 0` and `a_2x^3 + b_2x^2+ c_2x + d_2 = 0` have a pair of repeated roots common, then prove that `|[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1x^3 + b_1x² + c_1x + d_1 = 0 and a_2x^3 + b_2x^2+ c_2x + d_2 = 0 have a pair of repeated roots common, then prove that |[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0

If a_1x^3 + b_1x² + c_1x + d_1 = 0 and a_2x^3 + b_2x^2+ c_2x + d_2 = 0 have a pair of repeated common roots, then prove that |[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0

If a_1x^3 + b_1x² + c_1x + d_1 = 0 and a_2x^3 + b_2x^2+ c_2x + d_2 = 0 have a pair of repeated common roots, then prove that |[3a_1,2b_1,c_1],[3a_2,2b_2,c_2],[a_2b_1-a_1b_2,c_1a_2-c_2a_1,d_1a_2-d_2a_1]|=0

If a_(1) x^(3) + b_(1)x^(2) + c_(1)x + d_(1) = 0 and a_(2)x^(3) + b_(2)x^(2) + c_(2)x + d_(2) = 0 a pair of repeated roots common, then prove that |{:(3a_(1)", "2b_(1) ", "c_(1)),(3a_(2)", " 2b_(2)", "c_(1)),(a_(2)","b_(1)- a_(1)b_(2)", "c_(2)a_(1)-c_(2)a_(1)", "d_(1)a_(2)-d_(2)a_(1)):}|=0

If a_(1) x^(3) + b_(1)x^(2) + c_(1)x + d_(1) = 0 and a_(2)x^(3) + b_(2)x^(2) + c_(2)x + d_(2) = 0 a pair of repeated roots common, then prove that |{:(3a_(1)", "2b_(1) ", "c_(1)),(3a_(2)", " 2b_(2)", "c_(2)),(a_(2)""b_(1)- a_(1)b_(2)", "c_(2)a_(1)-c_(2)a_(1)", "d_(1)a_(2)-d_(2)a_(1)):}|=0

If a_1x^2 + b_1 x + c_1 = 0 and a_2x^2 + b_2 x + c_2 = 0 has a common root, then the common root is

If the two lines a_1x + b_1y + c_1 = 0 and a_2x + b_2y + c_2 = 0 cut the co-ordinates axes in concyclic points. Prove that a_1a_2 = b_1b_2

If the lines a_1x+b_1y+c_1=0 and a_2x+b_2y+c_2=0 cut the coordinae axes at concyclic points, then prove that |a_1a_2|=|b_1b_2|