Home
Class 12
MATHS
Consider two functions f(x)={[x], -2 le ...

Consider two functions `f(x)={[x], -2 le x le -1 and [x]+1, -1 < x le 2 and g(x)={[x], -pi le x < 0 and sinx, 0 le x le pi,` where[.] denotes greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),(Sinx 0le xle pi ):} where [.] denotes the greatest functions The range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is

Consider the function f(x)={2x+3, x le 1 and -x^2+6, x > 1 Then draw the graph of the function y=f(x), y=f(|x|) and y=|f(x)|.

Consider the function f(x)={2x+3, x le 1 and -x^2+6, x > 1} Then draw the graph of the function y=f(x), y=f(|x|) and y=|f(x)|.

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is