Home
Class 12
MATHS
In a DeltaABC, AD is the altitude from A...

In a `DeltaABC, AD` is the altitude from A. Given `bgt,c angleC=23^(@) and AD=(abc)/(b^(2)-c^(2))`, then `angle B=`....

Promotional Banner

Similar Questions

Explore conceptually related problems

In a DeltaABC , AD is the altitude from A. Given b gt c, angleC=23^(@)" and "AD=(abc)/((b^(2)-c^(2)) , find angleB .

In a DeltaABC , AD is the altitude from A. Given b gt c, angleC=23^(@)" and "AD=(abc)/((b^(2)-c^(2)) , find angleB .

In a triangle ABC, AD is the altitude from A. If b gt c . angleC = 23^(@) and AD = (abc)/(b^(2) - c^(2), " then " angle B =

In DeltaABC, AD is the altitude from A, if b gt c, C=23^(0), AD=(abc)/(b^(2)-c^(2)) then angle B=

In a triange ABC, AD is the altitude from A. Given bgtc,/_C=23^0 and AD= (abc)/(b^2+c^2), then /_A…..

In triangle ABC,AD is the altitude from A If b>c,/_C=23^(0), and AD=(abc)/(b^(2))-c^(2) then /_B=

In a triangle ABC,AD is the altitude form- abcA (Fig.12.9). Given b>0,2C=23^(@) and AD=(abc)/(b^(2)-c^(2)) then /_B. is equal to

In DeltaABC , AD and BE are altitudes. If BC=8, AC=12 and AD=6, find ar (ABC) and BE.