Home
Class 12
MATHS
lim(x->0)(tan^(- 1)x-sin^(- 1)x)/(sin^3x...

`lim_(x->0)(tan^(- 1)x-sin^(- 1)x)/(sin^3x),` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

If lim_(xto0)(sin^(-1)x-tan^(-1)x)/(3x^3) is equal to L, then the value of (6L+1) is :

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr0)sin^(-1)sin cot^(-1)((1)/(x)) is equal to -

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(2))

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :