Home
Class 11
MATHS
Let A = [[a, b], [c, d]] and B = ((p, q...

Let `A = [[a, b], [c, d]]` and `B = ((p, q)) != [[0, 0]]` Given that `AB = B` and `a+d = 2`. Then the value of `(ad -bc)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(a,b),(c, d)]and B=[(alpha), (beta)] ne [(0), (0)] such that AB = B and a+d=2021 , then the value of ad-bc is equal to ___________ .

If A=[[a,b],[c,d]] and I=[[1,0],[0,1]] then A^2-(a+d)A-(bc-ad)I=

Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)] . Then the value of a+b+c+d is

Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)] . Then the value of a+b+c+d is

If A=((a, b), (c, d)) and I=((1, 0), (0, 1)) show that A^(2)-(a+d)A=(bc-ad)I_(2).

If ( a times b)*(c times d)=(a*c)(b*d)+k(a.d)(b.c) then the value of k is

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50 A=[(a,b),(c,d)] Then the value of a+b+c+d is

If a!=p ,b!=q ,c!=ra n d|p b c a q c a b r|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.