Home
Class 11
MATHS
Let A = ((1 , -x / n),(x/n , 1)), B = ((...

Let `A = ((1 , -x / n),(x/n , 1)), B = ((0, -1),(1, 0))` then `lim_(x -> 0) [ lim_(n -> oo) 1/x (I - A^n)]` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) ((1+x)^(n)-1)/x is

Evaluate : lim_( x -> 0 )( ( 1-x ) ^( 1/n ) -1) /x =

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

m,n,in1^(+), then lim_(x rarr0)(sin x^(n))/((sin x)^(m)) equals

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .