Home
Class 12
MATHS
A square matrix P satisfies P^(2)=I-P wh...

A square matrix `P` satisfies `P^(2)=I-P` where `I` is identity matrix. If `P^(n)=5I-8P`, then `n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A square matrix P satisfies P^(2)=I-p where I is the identity matrix and p^(x)=5I-8p, then x

A square matrix P satisfies P^(2)=I-2P where I is identity matrix.If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a^2+b^2=

A square matrix P satisfies P^(2)=I-2P where I is identity matrix. If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P ,then

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix P satisfies P^2=I-2P where I is the identify matrix if P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a,b=