Home
Class 12
MATHS
If f(x) is continuous at x=pi, where f(...

If `f(x)` is continuous at `x=pi`, where `f(x)=(1- cos ( 7(x-pi)))/(5(x - pi)^(2))`, for `x!= pi`, then `f(pi)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x = pi , where f(x)=(sqrt(2+cos x)-1)/((pi-x)^(2))", for " x!= pi , then f(pi)=

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi/2 -x)^(2)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(1-sin x)/((pi-2x)^(2)) , for x != pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(3^(x- pi/2)-6^(x- pi/2))/(cos x) , for x != pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f (x) is continuous at x=pi, where f(x) =(sqrt(2+cos x)-1)/((pi-2)^(2)), "for" x ne pi, find f(pi).

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=