Home
Class 11
MATHS
" Let "f(x)=x^(2)+(1)/(x^(2))-6x-(6)/(x)...

" Let "f(x)=x^(2)+(1)/(x^(2))-6x-(6)/(x)+2," then minimum value of "f(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(2)+(1)/(x^(2))-6x-(6)/(x)+2 then min value of f(x)

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

Find the minimum value of f(X)=x^(2)-5x+6 .

What is the minimum value of f(x)= |2x - 5|+6 ?

If f(x)=sqrt(2x^(2)-6x+5)+sqrt(2x^(2)-40x+218) ,then the minimum value of f(x) is

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

If f(x)=px^(2)+qx+r and f(-2)=11,f(-1)=6,f(1)=2 then the minimum value of f(x) is

Let f(x)=8x^(3)-6x^(2)-2x+1, then

Let f(x)=8x^(3)-6x^(2)-2x+1, then