Home
Class 12
MATHS
lim(n rarr oo){(1+x)(1+x^(2))(1+x^(4)).....

lim_(n rarr oo){(1+x)(1+x^(2))(1+x^(4))....(1+x^(2n))}" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |x|<1 , then lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^n))=

lim_(n rarr oo)(1+(x)/(n))^(n)

Lim it_(n rarr oo){(1+x)(1+x^(2))(1+x^(4))......(1+x^(2^(n)))}= if |x|<1 has the value equal to

f(x)=lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))..........(1+x^(2^(n-1))) then

if |x|<1 then (Lt)_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))......*(1+x^(2n))=

lim_(x rarr oo) (1+2/n)^(2n)=

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_(x rarr oo){(1)/(1-n^(2))+(2)/(1-n^(2))+(n)/(1-n^(2))} is equal to 0 (b) -(1)/(2)(c)(1)/(2)(d) none of these

lim_(x rarr oo)(n+1)/(2n^(2)+n-1)

lim_(x rarr oo)(2-(1)/(x)+(4)/(x^(2)))