Home
Class 12
MATHS
sqrt(1+x^(2))sqrt(1+y^(2))dx+xydy=0...

sqrt(1+x^(2))sqrt(1+y^(2))dx+xydy=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations. sqrt(1+x^(2))dx +sqrt(1+y^(2))dy=0

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

Solve the differential equation : y sqrt(1-x^2)dy-sqrt(1+y^2)dx =0

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))