Home
Class 12
MATHS
(sqrt(3)+i)^(100)=2^(99)(a+ib)tanb=...

(sqrt(3)+i)^(100)=2^(99)(a+ib)tanb=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sqrt(3)+i)^(100)=2^(99)(a+ib), then find

If (sqrt3+i)^(100)=2^(99)(a+ib) then b=

If (sqrt(3)+i)^(100)=2^(99)(a+i b) then a^(2)+b^(2)=

If (sqrt(3)+i)^(100)=2^(99)(a+ib) . Then show that a^(2)+b^(2)=4

Statement-I : If e^(itheta)=costheta+isintheta then for the DeltaABCe^(iA)e^(iB)e^(iC)=-1 Statement-II : If (sqrt3+1)^(100)=2^(99)(a+ib) then b=2sqrt3

If (sqrt3 + i)^(100) = 2^(99) (p + iq) , then p and q are roots of the equation: