Home
Class 12
MATHS
" If "f(x)=|[1,2x,3x^(2)],[3,a,27],[1,3,...

" If "f(x)=|[1,2x,3x^(2)],[3,a,27],[1,3,9]|" and "int_(0)^(3)f(x)dx=0" then a is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(1,2x,3x^2),(3,a,27),(1,3,9)|and int_0^3 f(x) dx=0, then a is equal to (i) 3 (ii)6 (iii)9 (iv)any real number

If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

int_0^3 (3x+1)/(x^2+9) dx=

The value of int_(0)^(3)(3x+1)/(x^(2)+9)dx is equal to -

If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):} , then int_(0)^(2)f(x)dx is

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

Let f(x)={{:(1-x,0lexle1,),(0,1lexle2,),((2-x)^(2),2lexle3,):} , then 6int_(0)^(3)f(x)dx is equal to-