Home
Class 12
MATHS
(d)/(dx){e^(ax)sin(bx+c)}=...

(d)/(dx){e^(ax)sin(bx+c)}=

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (d)/(dx) e^(ax) cos (bx + c) = r e^(ax) cos (bx + c + alpha) where r= sqrt(a^(2) + b^(2)), cosalpha= (a)/(r ), sin alpha = (b)/(r ) and (d^(2))/(dx^(2)) e^(ax) cos (ax + c) = r^(2) e^(ax ) cos (bx + c + 2 alpha) .

(d)/(dx){log_(e)(ax)^(x)}

(d)/(dx)[e^(x)sin sqrt(3)x]=

(d)/(dx)(e^(x)sin sqrt(3)x) equals-

d/(dx) (e^(x sin x)) =

d/(dx) (e^(x sin x)) =

(d) / (dx) e ^ ((x sin x + cos x))

(d)/(dx){Sin^(-1)(e^(x))} is equal to

The differentiation of e^(x) with respect to x is e^(x). i.e.(d)/(dx)(e^(x))=e^(x)

(d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to