Home
Class 14
MATHS
[" ufa "a=(sqrt(3))/(2)" हो,तो "(sqrt(1+...

[" ufa "a=(sqrt(3))/(2)" हो,तो "(sqrt(1+a)+sqrt(1-a))=?],[" (a) "sqrt(3)quad " (b) "(sqrt(3))/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

(sqrt(sqrt(3)+sqrt(2)) + sqrt(sqrt(3)-sqrt(2)))/sqrt(sqrt(3)+1)

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :