Home
Class 14
MATHS
tan^(-1)2x+tan^(-1)3x=(x)/(4)" ont "sin^...

tan^(-1)2x+tan^(-1)3x=(x)/(4)" ont "sin^(2)varepsilon x

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

solve tan^(-1) 2x + tan^(-1) 3x = pi/4 , if 6x^2 lt 1 .

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Solve : tan^(-1) 3x+tan^(-1) 4x = tan^(-1)(1/x), 12 x^(2) lt 1 , x!= 0

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Prove that, tan^(-1)((3 sin 2x)/(5+3 cos 2x))+tan^(-1)((1)/(4) tan x)=x .

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]| =0 , then the number of values of x satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4